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Forages are the major supporting feature of 
sustainable agriculture and constitute one of the major 
resources for the successful animal production system. 
Due to shortage of feed and fodder resources in the 
country, animal production has become an 
uneconomical and unattractive venture for the farming 
community. The forage grasslands have been the major 
source of livestock feeding and represent about 26% of 
the land area and 70% of the agricultural area at global 
scenarios (Capstaff and Miller 2018). Forage crops 
generally belong to the grass family or are the 
herbaceous legumes, however tree legumes such as 
Acacia and Leucaena species also fulfills the demand 
of forage for animals (Muir et al. 2011; Capstaff and 
Miller 2018). The digestibility of forages exhibit 
extreme variation and as the materials of cell wall is the 
largest component, cell wall digestibility becomes the 
primary determinant in efficacy and productivity of 
animals. During the process of maturation, cell walls of 
plant tissues endure changes in chemical composition 
and structural organization. The aerial parts such as 
leaves and stems exhibit variation in types, proportions 
and composition of chemical constituents that affects 
the cell wall digestibility of crops, lignin being one of 
the major factor (Jung 2012). Lignin is an imperative 
component impregnated in the cell walls of forages that 
has been recognized as the key factor restraining the 

digestibility of forage crops (Vogel and Jung 2001). 
Lignin being essentially undigestible inhibits the 
fermentation of forage cell wall polysaccharides in the 
rumen of cattle (Kondo et al. 1998) resulting in quality 
reduction of the forage crop.
 Tall fescue (Festuca arundinacea Schreb.) is a 
perennial, cool-season bunchgrass grown for pasture, 
hay, silage and turf (Mian et al. 2005). It belongs to the 
genus 'Festuca,' which is one of the largest genera 
under the Poaceae family, containing over 500 grass 
species (Hand et al. 2012). It is a good source of 
nutritional components such as protein (9.33-12.54%), 
NDF (63.10-71.40%), ADF (46.06-53.06%), 
hemicellulose (11.23-19.46%) with higher dry matter 
digestibility (47-55.80%) (Katoch et al. 2013).  
However, digestibility of tall fescue has been criticized 
due to deposition of certain limiting factors which limit 
the intake potential and energy availability from this 
crop. The most important constraint on the digestion of 
plant cell wall is lignin (Vogel and Jung 2001). 
Lignification of forage tissues limits the amount of 
digestible energy available to livestock, resulting in an 
incomplete utilization of celluloses and hemicelluloses 
by ruminant animals (Casler et al. 2002).

Lignins are complex phenolic heteropolymers 
associated with the polysaccharidic components of the 
plant cell wall. In forage grasses, the major constituents 
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of lignin are guaiacyl (G) units derived from coniferyl 
alcohol, syringyl (S) units derived from sinapyl alcohol 
and p-hydroxyphenyl (H) units derived from p-
coumaryl alcohol. Lignification in plants is an 
important developmental process that provides rigidity 
to the cell wall and helps in plant support (Jones et al. 
2001; Boerjan et al. 2003). The lignin deposition 
mostly occurs in the sclereids, fibers and tracheary 
elements (Jones et al. 2001; Ferreira et al. 2017). In 
spite of its important role in the plant survival, lignin is 
a major constrain in the digestibility of animal feeds. 
The lignin content as well as composition affects the 
cell wall degradability of forages (Vogel and Jung 
2001). The anatomical structure of lignified cell and 
tissues in grasses are important in determining the 
extent as well as rate of fiber digestion by affecting the 
accessibility of rumen microorganisms (Wilson and 
Mertens 1995; Wilson and Hatfield 1997).

Maule staining is usually used to distinguish the 
gymnosperms and angiosperms wood due to difference 
in the chemical structure of lignin. Maule reagent uses 
potassium permanganate, a strong oxidizing agent 
capable of cleaving -C-C – linkages between adjacent 
–CHOH groups in polysaccharides to –CHO groups 
which is further oxidized to –COOH group. Potassium 
permanganate can oxidize lignin and gets reduced to 
manganese oxide (Crocker 1921). The manganese 
oxide formed interacts to form complex with lignin 
(Hepler et al. 1970). In order to determine the extent, 
timing and composition of lignin Maule staining of Tall 
fescue internodes was done to analyze the anatomical 
changes associated with lignin deposition at four 
different growth stages.

Materials and Methods
Plant material 

 Tall Fescue (Festuca arundinacea Schreb.) plants 

were raised and maintained in pots under controlled 

conditions at the research farm, CSK Himachal 

Pradesh Krishi Vishvavidyalaya, Palampur. The fresh 

tissues at first node palpable (S1), second node palpable 

(S2), third node palpable (S3) and spikelet emergence 

(S4) stage were collected from pot grown plants for 

histochemical analysis of lignin deposition.

Histochemical analysis 

Tall fescue internodes were selected for dissection 

of sections. The histochemical analysis was carried out 

using Maule staining technique (Nakano et al. 1992). 

The sections were hand cut and engrossed in neutral 

potassium permanganate (1%) solution for 5 minutes 

followed by rinsing with double distilled water. 

Decoulorization of sections were carried out by placing 

them in 3% HCl solution for 3 minutes followed by 

washing with double distilled water and neutralization 

with 14.8 M ammonium hydroxide solution. The 

photographs of sections were observed using Olympus 

inverted Microscope attached with colour camera.

Results and Discussion
Histochemical staining of Tall fescue internodes 

was carried out at four different growth stages. The 
staining results revealed a gradual increase in 
deposition of lignin with the progression of Tall fescue 
growth from first node palpable stage (S1) to spikelet 
emergence stage (S4). The staining of the Tall fescue 
internodal sections at first node palpable stage (S1) 
exhibited minor yellow coloured staining around the 
vascular bundles and in the outer epidermis and faint 
yellow colour in the cortical region as visualized under 
microscope (Figure 1). 

Figure 1: Maule Staining of Tall fescue 

internodes at first node palpable stage (S1). 

The yellow colour around the vascular 

tissues suggests deposition of G and H 

lignin.
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The section of Tall fescue internodes at second node 
palpable stage (S2) exhibited a shift of colour to 
yellow-brown was observed (Figure 2). The 
sclerenchymatous region was found to exhibit 
lignification in addition to the vascular bundle regions. 

The increase in colour intensity both around the 
vascular bundles and in sclerenchymatous region was 

observed in the sections of third node palpable stage 
(S3) (Figure 3).

The internodal sections at the spikelet emergence 
stage (S4) exhibited a deep red colour stain throughout 
the vascular bundle and sclerenchymatous cell regions 
(Figure 4).
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The lignins are detected by Maule's test in either red 
or brown depending on the type of lignin (Patten et al. 
2007). The lignin polymer rich in syringyl (S) unit stain 
red, whereas, guaiacyl (G) and hydroxyphenyl (H) unit 
stains brown (Ferreira et al. 2017). Maule staining has 
been specifically used for detection of syringyl (S) 
lignin and also for distinguishing guaiacyl lignin from 
syringyl lignin (Donaldson 2009). The staining 
procedure has also been used in determination of 
cellular specificity, distinct subcellular localization of 
lignin deposition as well as composition of lignin 
(Ferreira et al. 2017).
 In our study, a gradual increase in stain colour was 
observed in the nodal sections of Tall fescue with 
progression of growth stages. The increase in colour 
intensity of Maule stain with the progression of growth 
stages from first node palpable stage to spikelet 
emergence stage suggests that the deposition of lignin 
starts at the first node palpable stage, however, the 
prominent lignin deposition was observed at second 
and third node palpable stage with maximum 
deposition at spikelet emergence stage (Figure 1-4). 
The increase in lignin deposition may be due to 
increased activities of lignin synthetic enzymes with 
progression of growth (Buxton and Fales 1994), 
however, the increase may also be due to enhanced 
partitioning of plant dry matter to more lignified tissues 
(Cone and Engels 1990). Most of the lignification was 
observed in the region of epidermis, vascular tissues 
and sclerenchyma. Grasses generally exhibit higher 
concentrations of lignin in epidermis, xylem and 
sclerenchyma (Buxton and Redfearn 1997; Moore and 
Jung 2001). In our study, the  internodal sections of 
Tall fescue were stained in  yellow, brown and red with 
progression of growth stages which may be due to 
reduction of potassium permanganate by lignin 
resulting in formation of manganese oxides (Kutscha 
and Gray 1972) which forms complexes with lignin 
(Hepler et al.1970). The yellow colour stain at first 
node palpable stage (S1), yellow brown at second node 

  

palpable stage (S2) and brown colour at third node 
palpable stage (S3) may be due to deposition of 
guaiacyl (G) and p-hydroxyphenyl (H) lignin at initial 
vegetative phases of growth and development in Tall 
fescue (Figure 1-3).  The shift in colour from yellow at 
first node palpable stage (S1) to red at spikelet 
emergence stage (S4) suggests an increase in syringyl 
(S) lignin deposition and decrease in guaiacyl (G) 
lignin deposition at reproductive stage of Tall fescue 
(Figure 1-4). The results are in support with the fact that 
monocots lignin is mostly composed of G and S units of 
comparable levels (Baucher et al. 1998). Similar 
findings on increase in lignin content and shift of lignin 
types has  also been reported in case of transgenic 
tobacco (Sewalt et al. 1997), Norway spruce 
(Soukupova et al. 2000), Medicago sativa (Patten et al. 
2007), Arabidopsis thaliana (Mitra and Loque 2014) 
and Neolamarckia cadamba (Li et al. 2019). Lignin 
deposition in the cell wall structure of grasses is an 
important constrains in its digestibility and anatomical 
limitations in the digestibility have been considered as 
a vital issue in matured grass stems (Wilson and 
Hatfield 1997). In Tall fescue, anatomical changes are 
closely associated with lignin deposition which 
increases with progression of growth stages with 
maximum deposition of syringyl (S) lignin at 
reproductive stage. Understanding the process and 
timing of lignification as well as composition of lignin 
will provide an insight for improvement and 
establishment of Tall fescue as forage crop. 
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